
Example: The Pareto Maximization Problem

Let’s assume we have a 2 × 2 exchange-only situation. We’ll label the consumers as A and B

and their consumption bundles as (xA, yA) and (xB, yB). Let’s assume that each one’s preference

preordering is represented by the same utility function, u(x, y) = x2y, and assume that their total

endowment of the two goods is the bundle (̊x, ẙ) = (25, 10).

(a) Let’s check whether the allocation ((x̂A, ŷA), (x̂B, ŷB)) = ((15, 6), (10, 4)) is a solution of the

constrained maximization problem (P-max):

max
((xA,yA),(xB ,yB))∈R4

+

uA(xA, yA) = x2
AyA

subject to xA + xB 5 25,

yA + yB 5 10,

uB(xB, yB) = uB(x̂B, ŷB) = (10)24 = 400.

(P-Max)

We need to determine whether the numbers x̂A = 15, ŷA = 6, x̂B = 10, and ŷB = 4 satisfy the

following equations for some numbers σx, σy, λ = 0:

xA : 2xAyA = σx

yA : x2
A = σy

xB : 0 = σx − λ2xByB

yB : 0 = σy − λx2
B

σx : xA + xB = 25

σy : yA + yB = 10

λ : x2
ByB = 400.

(FOC)

The last three equations are clearly satisfied at ((x̂A, ŷA), (x̂B, ŷB)) = ((15, 6), (10, 4)) . The first

four equations are satisfied if σx = 180, σy = 225, and λ = 9/4 . So ((x̂A, ŷA), (x̂B, ŷB)) is a solution

of (P-Max). (Notice that these were equations, not inequalities. The first four are equations because

x̂A, ŷA, x̂B, and ŷB are all positive — i.e., the allocation ((x̂A, ŷA), (x̂B, ŷB)) is interior. The last

three have to be equations if σx, σy, and λ all turn out to be positive, as in fact they did.)

(b) Let’s remind ourselves how we obtained the nice simple form of the (FOC) equations above.

Let’s write the three constraints in (P-Max) as follows:

G1(xA, yA, xB, yB) 5 25, where G1(xA, yA, xB, yB) := xA + xB

G2(xA, yA, xB, yB) 5 10, where G2(xA, yA, xB, yB) := yA + yB

G3(xA, yA, xB, yB) 5 0, where G2(xA, yA, xB, yB) := 400− uB(xB, yB).



Then the first-order marginal conditions are

xA :
∂uA

∂xA

= σx
∂G1

∂xA

+ σy
∂G2

∂xA

+ λ
∂G3

∂xA

yA :
∂uA

∂yA

= σx
∂G1

∂yA

+ σy
∂G2

∂yA

+ λ
∂G3

∂yA

xB :
∂uA

∂xB

= σx
∂G1

∂xB

+ σy
∂G2

∂xB

+ λ
∂G3

∂xB

yB :
∂uA

∂yB

= σx
∂G1

∂yB

+ σy
∂G2

∂yB

+ λ
∂G3

∂yB

,

(FOMC)

in which there’s an equation for each variable and the RHS of each equation contains terms

corresponding to each of the three constraints. But many of the partial derivatives in these terms

have the value 0 or 1, and the equations are therefore much simpler than they at first appear:

xA :
∂uA

∂xA

= σx · 1 + σy · 0 + λ · 0

yA :
∂uA

∂yA

= σx · 0 + σy · 1 + λ · 0

xB : 0 = σx · 1 + σy · 0 + λ(−∂uB

∂xB

)

yB : 0 = σx · 0 + σy · 1 + λ(−∂uB

∂yB

),

which we can write more compactly as

xA : uAx = σx

yA : uAy = σy

xB : 0 = σx − λuBx

yB : 0 = σy − λuBy.

(FOMC)

These are exactly the first four equations in (FOC) above, in (a).

(c) Let’s try a different allocation, ((x̂A, ŷA), (x̂B, ŷB)) = ((15, 5), (10, 5)), and see if it satisfies

(FOC). Now the RHS of the third constraint is 500 instead of 400, and the last three equations

are all satisfied again. But now there are no values of σx, σy, and λ that will satisfy the first four

equations, the FOMC. The first two equations require that σx = 150 and σy = 100, but the next

two equations require that σx = σy. Therefore this allocation is not a solution of (P-Max) (and it

is therefore not Pareto efficient). It’s important to note that this allocation failed only to satisfy

the FOMC, the first-order marginal conditions. As this suggests, the marginal conditions alone

are important: they’re necessary for a solution of (P-Max), and if the “complementary slackness”

conditions are satisfied, then the marginal conditions are sufficient as well.
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(d) So now let’s focus on just the marginal conditions. The first two equations in (FOC) in (a),

and the second two equations, respectively, yield

2
yA

xA

=
σx

σy

and 2
yB

xB

=
σx

σy

,

which in turn yield
yA

xA

=
yB

xB

. (1)

If an allocation satisfies equation (1) then we can clearly find values of σx, σy, and λ that will satisfy

the four (FOMC) equations, i.e., the first four equations in (FOC). If the allocation also fully

allocates the endowment bundle, then it’s Pareto efficient. The equation (1) therefore becomes

a single marginal condition with which we can check whether any interior allocation is Pareto

efficient (in this specific two-person, two-good example).

(e) In (d) we obtained equation (1), in which the Lagrange multipliers dropped out, leaving only

the variables of the problem (P-Max), the quantities of the goods. Let’s use equation (1) to

determine all the Pareto allocations. Since we know that a Pareto allocation must fully allocate

the endowment bundle (̊x, ẙ) = (25, 10), we have xB = x̊ − xA and yB = ẙ − yA. So equation (1)

can be rewritten as
yA

xA

=
ẙ − yA

x̊− xA

, i.e.,
yA

xA

=
10− yA

25− xA

, (2)

and performing a little bit of arithmetic on (2),

25yA − xAyA = 10xA − xAyA

i.e., 25yA = 10xA

i.e., yA = 2
5
xA.

The whole set of all interior Pareto allocations is now seen to be the straight line from the SW

corner of the Edgeworth box to the NE corner. (Note that, from (1), we also have yB = 2
5
xB .)

(f) Now notice that the arithmetic we performed above, on equation (2), could have instead been

performed on the version that appears on the left in (2), the version that has only x̊ and ẙ and

not 25 and 10:
x̊yA − xAyA = ẙxA − xAyA

i.e., x̊yA = ẙxA

i.e., yA =
ẙ

x̊
xA.

This tells us that the particular endowment bundle didn’t matter for the result that the Pareto

allocations are the ones on the diagonal of the Edgeworth box.
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(g) In (d), when we obtained the single marginal condition that we labeled as equation (1), we

obtained equation (1) from the first four equations in (FOC) in (a) — i.e., from the FOMC for

the specific utility functions in this example (which happened to be the same utility function).

But we could have done exactly the same thing with the four (FOMC) equations in (b) — let’s

say the nice, compactly written version of (FOMC). Just as in (d), the first two equations and the

remaining two equations yield, respectively,

uAx

uAy

=
σx

σy

and
uBx

uBy

=
σx

σy

. (3)

Since a consumer’s MRS between x and y is
ux

uy

, equation (3) yields

MRSA = MRSB . (4)

We see that the single marginal condition we’ve obtained holds not just for the specific utility

function u(x, y) = x2y in this example, but for any differentiable quasiconcave utility functions uA

and uB.

This example went through much more detail and showed many more steps than one would nor-

mally do. The typical way we would proceed would be to write down an appropriate constrained

maximization problem, like (P-Max), whose solutions are the Pareto allocations; then obtain the

first-order marginal conditions, like the compact version of (FOMC) in (b); and then use these to

obtain economically meaningful marginal conditions, like equations (3) and (4) in (g).

Important: Some of the results in this example are special to the example and don’t hold

in general. For example, the Pareto allocations don’t generally lie on the straight line joining

two corners of the Edgeworth box. And since we used the Kuhn-Tucker conditions throughout,

the results may not hold for utility functions that aren’t continuously differentiable or aren’t

quasiconcave.
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